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1) Introduction : —
Now a days fractional Fourier transforms plays important role in information processing
[5]. The fractional Fourier transform as an extension of the Fourier transform. It has been used
many app lications such as optical system analysis, filter design, solving differential equations.
Phase retrieval and pattern recognition etc. [8] [3],In fact the fractional Fourier transform is

special case of the canonical transform. The canonical transform is defined as

(CTH(t)}(s) = leﬁ Tei(%)te%(%}f (t)at b£0 oo, (1)
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:Jae-z(cds )f(d.s) b =0

And the constraint that ad-bc=1 must be satisfied. The canonical transform defined above in (1)
are all one-dimensional [1-D], in [1] [2], [10],[11],[12],[13],[14],[15], they have generalized
them from one—dimensional into the (2-D) cases, [4] ,[06],[07].T he two-dimensional canonical

sine-cosine transform it is extended to the distribution of compact suppott by using kemel
method [09] .

The two-dimensional canonical sine-cosine transform is defined as.

{2 DCSCT f (t, x)}(s, W) = —i \/Zl_b le__belz[%jszelz(%jwz T Tsin(%t}cos (% xj e;‘(;jﬁ .egimxz f (t, x) dxdt
i i i
When b=0

Notation and terminology of this paper is as per [17], [18]. The paper is organized as follows.
Section. 2 gves the definition of 2-D canonical sine-cosine transform on the space of generalized
function in section. 3 inversion theorem is proved in section. 4 Unigqueness theorems proved
lastly the conclusion is stated.

2. Definition two Dimensional (2D) Gereralized canonical sine-cosine transform[2DCSCT] :

Let E'(RxR) denote the dual of E(RxR) therefore the generalized canonical sine-cosine

transform of f (t,x)e E'(RxR) is defined as

{2DCSCT f (t,x)}(s,w)=(f (t,x),K,(t;5)K (xw))
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! eEi(%]sz eLZ(%j ! Ojo Of sin (%tj cos (% XJ e_;[%)tz eé(%] ‘ f (t,x) dxdt

o8 a2
Where K_(t,5)=(—1)—=—=¢2'"’ e2'?/ sin| =t when b =0
:\/EeE(Cdsz)é(t—ds) whenb =0
d),e ifal)e
and K, (x,w)= L ez(b) ez(b) cos(ﬂx] when b #0
2rib b
=\/ae5(w)5(x—dw) whenb =0
sup
where y. {K, (t,5) K (x,W)} =—o<t<o|DfD, K, (t,s)K, (x,w)[<
—00 < X< 00

3. Theorem :( Inversion) If {2DCSCT f (t, x)} (s,w) is canonical sine- cosine transform of

f (t,x) then

f(t,x)= —ie? _E 1’27[1’271

0t ik S w
;U;e e sm[btjcos(b j{ZDCSCT f (t, x)} (s, w) dsdw,
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Proof: Thetwo dimensional canonical sine- cosine transform if f (t,X) is given by

{2DCSCT £ (t, )} (s, W)

:_i\/Ztr_ib\/;? I(d jjsm( )cos( jeii(%jtzeii[gszf(t,x)dxdt

f(s,w) ={2DCSCT f(t,%)} (s, W)
- f(s,W)

:—i\/%\/zl__beéb .e; ]MTTsin(;tjcos(Et) {a)tzelz[zjzf(t,x)dxdt
mib «/ 27i oo

f(s,w)~/27ib\27ib e*iz(%jsz,e?i(%jwz
B _IJ. jsm( ]COS( Xjelz(%)‘zelz[EJX2 f (t,x)dxdt
Gy, = (5 W2z & 20 ¢ 2

And g(t,x) = elz[%)tze%(gsz f(t,x)

C, (s, W)——II j g(t, x). sm[ ] cos(%xjdxdt

—00 —00

C,(s,w)={2DCSCTy(t, x)}(; "t‘)’j
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Where {2 DCSCTg (t, x)}(%%’j is 2D Canonical sine-cosine transform of g(t,x).2D canonical

sine -cosine transform g(t,X) with argument

=n and

ol=

E =¢ Therefore, % =dn and —=d¢

<. Cy(s,w)={2DCSCTy(t,x)}(n,&)

By using inversion formulawe get .. g(t, X) :—iJ' .[Cl(s,w)sin(nt)cos(gx)dnd5

—00 —00

g(t,x) = —|I _[F(s w)~/27ib v/27ib e ) e ) sin(nt)cos(&x)dndé

—00 —00

e';(%)‘z e%[ﬁszf (t,X) =_iT T F(s,W)~/27ib «/27ib ealZ(E)Sz e‘;(s)w sin(%tjcos[vgv xjd—;%’v

—00 —00

D (%)
:—iJZ;ribJZ;rib%% 1162 oF ;I( W sm(b joos(vgvx] (s, w) dsdw

f(t, x)

e F\/ﬂ 574y sm(j ("Bvx]{chsc:Tf(t,x)}(s,modsdw
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3. Theorem:(Uniqueness)If{2DCSCT f (t,x)} (s,w)and {2DCSCT g(t,x)} (s,w) are 2D

canonical sine-cosine transform and

sup pf c's,, ands, and, suppgcs,,and s,
Where s, ={t:teR", [f|<a a>0}and s, ={x:xeR", |x|<b,b>0}
If {2DCSCT f (t,x)} (s,w)={2DCSCT g(t,x)} (s,w)
then, f = g in the sense of equality in D'(I)
Proof: By inversion theorem f —g

R 1o s

{2DCSCT f (t,x)} (s, w) dsdw)

|e ,IZH ,/h e? 3 sin (Etjcos[ﬂ xj
b b

{2DCSCT g(t, x)} (s, w) dsdw)

ia 200 _L_ E
_g=-i ’Zﬂ ’2” Je Ie | &) sm(ixjcos(ﬂxj
b b

[{2DCSCT f (t,x)}-{2DCSCT g(t, x)} |dsdw

Thus f=gin p(1)

Page 430 Copyricht © 2019Authors



Our Her itageuaccare Listal)

I1SSN: 0474-9030Vol-68, Special Issie-12

National Conference on Recent Trendsin Physics, Chemistry and
- ' Mathematics (RTPCM-2020)
"""""""" Heldon 4th February 2020 Organisedby : Department ofP hysics,
Chemistryand Mathematics, Sunderrao Solanke Mahavid/alaya,
Maplgaon, M5

Conclusion: - In this paper two-dimensional canonical sine-cosine is Generalized in the form the
distributional sense, we have inversion theorem for this transform is proved. Lastly uniqueness

theorem is also proved.
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